

We're pleased to present to you this year's Annual Drinking Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our primary water supply comes from 3 wells located throughout the Township. After leaving each well the water is treated with chlorine to control microbiological contaminants.

Este informe contiene informacion muy importante sobre su agua beber. Traduzcalo o hable con alguin que lo entienda bien.

If you have any questions about this report or concerning your water utility, please contact:

West Cocalico Township Water Authority Kent Reich P.O. Box 95 1568 W. Main St. Reinholds, PA 17569

West Cocalico Township Water Authority routinely monitors for constituents in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st, 2020. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily pose a health risk.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly persons, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

<u>Information about Lead</u>: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associate with service lines and home plumbing. Shoemakersville Boro Water System is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

<u>Information about Nitrate:</u> Nitrate in drinking water at levels above 10ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask for advice from your health care provider.

Water Quality Data

Chemical Contaminan	ts					
Contaminant (Units)	Violation Y/N	Level Detected	Range	MCL	MCLG	Major Sources in Drinking Water
Arsenic (ppb) Sampled in 2018	No	2	ND to 2	10	0	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes
Barium (ppm) Sampled in 2018	No	0.664	0.228 to 0.664	2	2	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Calcium (ppm) Sampled in 2019	No	64.8	45.6 to 64.8	NA	NA	Erosion of natural deposits
Chlorine (ppm)	No	1.3	1.12 to 1.3	4	4	Water additive used to control microbes.
Chromium (ppb) Sampled in 2018	No	2	ND to 2	100	100	Discharge from steel and pulp mills; Erosion of natural deposits
Cyanide (ppb) Sampled in 2018	No	1.6	ND to 1.6	200	200	Discharge from steel/metal factories; Discharge from plastic and fertilizer factories
Magnesium (ppm) Sampled in 2019	No	7.93	5.25 to 7.93	NA	NA	Erosion of natural deposits
Nitrate (ppm)	No	7.54	3.55 to 8.95	10	10	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Nitrite (ppm)	No	0.05	ND to 0.05	1	1	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Sulfate (ppm) Sampled in 2019	No	13.7	11.6 to 13.5	250	NA	Erosion of natural deposits
Combined Uranium (ppb) Sampled in 2018	No	3.37	1.14 to 3.37	30	0	Discharge from petroleum factories; discharge from chemical factories

Entry Point Disinfectant Residual								
Contaminant	Minimum Disinfectant Residual	Lowest Level Detected	Range of Detections	Units	Sample Date	Violation Y/N	Sources of Contamination	
Chlorine (Entry Point 100)	0.7	0.85	0.85 to 1.99	ppm	2020	No	Water additive used to control microbes.	
Chlorine (Entry Point101)	0.8	1.01	1.01 to 1.59	ppm	2020	No	Water additive used to control microbes	
Chlorine (Entry Point 102)	0.4	0.97	0.97 to 1.6	Ppm	2020	No	Water additive used to control microbes	

Lead and Copper (sampled in 2020)							
Contaminant	Action Level (AL)	MCLG	90 th Percentile Value	Units	# of Sites Above AL of Total Sites	Violation Of TT Y/N	Sources of Contamination
Copper	1.3	1.3	1.2	ppm	2	No	Corrosion of household plumbing
Lead	15	0	3	ppb	0	No	Corrosion of household plumbing.

In the above tables, you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Parts per million (ppm) or Milligrams per liter (mg/l) – one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter – one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Action Level (AL) –the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) – The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) – The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - The highest level of a disinfectant that is allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Non-Detects (ND) - laboratory analysis indicates that the contaminant is not present at a detectable level.

Additional Information

We are pleased to announce that your water meets or exceeds all Federal and State requirements, and as you can see we had no violations from contaminated water in 2020. We received a violation for failing to adhere to special conditions of our construction permit, specifically we did not provide DEP with information on the chosen coating systems on a water storage tank, and returned the tank into service prior to submitting Certificate of Construction and test results to DEP. This incident occurred between September 21, 2020 and November 24, 2020.

We have learned through our monitoring and testing that some constituents have been detected. These contaminants are listed in the table above. The state allows us to monitor for some contaminants less than once a year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, is more than one year old.

All sources of drinking water are subject to potential contaminants that are naturally occurring or manmade. Those contaminants can be microbes, organic or inorganic chemicals, or radioactive materials. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- -Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- -Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- -Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- -Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial process and petroleum production and mining activities.
- -Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

To ensure that tap water is safe to drink, EPA prescribes regulations which limit the number of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.